Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
The extractant-assisted transport of metal ions from aqueous to organic environments by liquid–liquid extraction has been widely used to separate and recover critical elements on an industrial scale. While current efforts focus on designing better extractants and optimizing process conditions, the mechanism that underlies ionic transport remains poorly understood. Here, we report a nonequilibrium process in the bulk aqueous phase that influences interfacial ion transport: the formation of metastable ion–extractant precipitates away from the liquid–liquid interface, separated from it by a depletion region without precipitates. Although the precipitate is soluble in the organic phase, the depletion region separates the two and ions are sequestered in a long-lived metastable state. Since precipitation removes extractants from the aqueous phase, even extractants that are sparingly soluble in water will continue to be withdrawn from the organic phase to feed the aqueous precipitation process. Solute concentrations in both phases and the aqueous pH influence the temporal evolution of the process and ionic partitioning between the precipitate and organic phase. Aqueous ion–extractant precipitation during liquid–liquid extraction provides a reaction path that can influence the extraction kinetics, which plays an important role in designing advanced processes to separate rare earths and other minerals.more » « less
-
Abstract We communicate a feasibility study for high‐resolution structural characterization of biomacromolecules in aqueous solution from X‐ray scattering experiments measured over a range of scattering vectors (q) that is approximately two orders of magnitude wider than used previously for such systems. Scattering data with such an extendedq‐range enables the recovery of the underlying real‐space atomic pair distribution function, which facilitates structure determination. We demonstrate the potential of this method for biomacromolecules using several types of cyclodextrins (CD) as model systems. We successfully identified deviations of the tilting angles for the glycosidic units in CDs in aqueous solutions relative to their values in the crystalline forms of these molecules. Such level of structural detail is inaccessible from standard small angle scattering measurements. Our results call for further exploration of ultra‐wide‐angle X‐ray scattering measurements for biomacromolecules.more » « less
-
The interaction of monoclonal antibodies (mAbs) with air/water interfaces plays a crucial role in their overall stability in solution. We aim to understand this behavior using pendant bubble measurements to track the dynamic tension reduction and x-ray reflectivity to obtain the electron density profiles (EDPs) at the surface. Native immunoglobulin G mAb is a rigid molecule with a flat, “Y” shape, and simulated EDPs are obtained by rotating a homology construct at the surface. Comparing simulations with experimental EDPs, we obtain surface orientation probability maps showing mAbs transition from flat-on Y-shape configurations to side-on or end-on configurations with increasing concentration. The modeling also shows the presence of β sheets at the surface. Overall, the experiments and the homology modeling elucidate the orientational phase space during different stages of adsorption of mAbs at the air/water interface. These finding will help define new strategies for the manufacture and storage of antibody-based therapeutics.more » « less
An official website of the United States government
